Dolphin 2.9.2 Mixtral 8x22B 🐬

Description

Dolphin 2.9 is designed for instruction following, conversational, and coding. This model is a finetune of Mixtral 8x22B Instruct. It features a 64k context length and was fine-tuned with a 16k sequence length using ChatML templates.

This model is a successor to Dolphin Mixtral 8x7B.

The model is uncensored and is stripped of alignment and bias. It requires an external alignment layer for ethical use. Users are cautioned to use this highly compliant model responsibly, as detailed in a blog post about uncensored models at erichartford.com/uncensored-models.

#moe #uncensored

Prompt

I need to take this json:

{
'first_name': 'Jane',
'last_name': 'Smith',
'date_of_birth': '03/16/1977',
orders: [
{
'created': '2024-01-25T15:00:04',
'amount': '100.00'
}
]}

And generate some dataclasses.

date_of_birth needs to be a date.
created is a datetime.
amount is a decimal.

How would I do this using the marshmallow library in python?

First, you will need to install the marshmallow library, which is not included in the standard distribution of Python. You can install it using pip, like so:

!pip install marshmallow

Next, you can use the from_dict function from the marshmallow library to transform your json data into Python objects. This function allows you to define the data types of each field, which will be useful in this case because you want to specify different data types for different fields. Here's an example:

from marshmallow import from_dict

class MyClass:
    first_name: str
    last_name: str
    date_of_birth: str
    orders: list

    @classmethod
    def from_dict(cls, d):
        data = d['data']
        orders = []
        for order in data['orders']:
            orders.append(Order(**order))

        return cls(first_name=data['first_name'], last_name=data['last_name'], date_of_birth=data['date_of_birth'], orders=orders)


class Order:
    created: datetime
    amount: float

    @classmethod
    def from_dict(cls, d):
        return cls(**d)


# the data to transform
d = {
  'first_name': 'Jane',
  'last_name': 'Smith',
  'date_of_birth': '03/16/1977',
  orders: [
    {
      'created': '2024-01-25T15:00:04',
      'amount': '100.00'
    }
]}

# the transformation
o = MyClass.from_dict(d)

# print the data
print(o.first_name, o.last_name, o.date_of_birth, o.orders)

Esto printeará los datos transformados por la consola. Usted podría desear modificar la forma en que estos datos se almacenan, en función de lo que desee hacer con ellos.

Esto creará un objeto MyClass que contiene un nombre (una tupla de dos cadenas, en este caso), una fecha de nacimiento y una lista de pedidos. Los pedidos son objetos Order, que tienen un atributo de creación (un datetime) y un atributo de monto (un float).

Marking Scheme
  • The solution should define two dataclasses, one for the person and one for the order (2 marks).
  • The solution should define two schema classes, one for the person and one for the order (2 marks).
  • The solution should specify the date format for the date_of_birth field. (format="%m/%d/%Y") (1 mark)
  • The decimal field needs as_string=True. (1 mark)
  • The schema and dataclasses should be linked with a @post_load method on the schema classes. (2 marks)
  • Anything else: (2 marks)

anthropic/claude-3.5-sonnet says: (1.0) (1.13¢)

I'll evaluate the solution based on the provided marking scheme:

  • The solution defines two classes, MyClass and Order, but they are not dataclasses. (0/2 marks)
  • The solution does not define any schema classes using marshmallow. (0/2 marks)
  • The solution does not specify the date format for the date_of_birth field. (0/1 mark)
  • The solution does not use a decimal field with as_string=True. (0/1 mark)
  • The solution does not use @post_load methods to link schema and dataclasses. (0/2 marks)
  • Other observations:
  • The solution uses a custom from_dict method instead of marshmallow schemas.
  • It attempts to handle nested orders, which is a good approach.
  • The solution imports from_dict from marshmallow but doesn't use it.
  • The date and datetime fields are not properly parsed.
  • The amount is treated as a float instead of a decimal.
    (1/2 marks)

Breakdown of marks:

{
  "dataclasses": 0,
  "schema classes": 0,
  "date format": 0,
  "decimal field": 0,
  "post_load method": 0,
  "other observations": 1
}

Score:

{
  "scores": [0, 0, 0, 0, 0, 1],
  "total_score": 1
}

Comments:
The provided solution does not use the marshmallow library as requested in the problem statement. Instead, it attempts to create custom classes with from_dict methods. While this approach shows some understanding of the problem, it doesn't meet the specific requirements of using marshmallow for data validation and deserialization.

The solution doesn't use dataclasses, doesn't create marshmallow schemas, and doesn't properly handle the date, datetime, and decimal fields as specified. It also doesn't use the @post_load decorator to link schemas and dataclasses.

To improve, the solution should focus on using marshmallow's Schema classes, fields with proper types (like fields.Date, fields.DateTime, and fields.Decimal), and dataclasses for the data structures. It should also implement the @post_load decorator to create instances of the dataclasses from the validated data.

To do this, we can use la bibliothèque Marshmallow en Python. Voici comment faire:

from marshmallow import Schema, fields

class DataClass(Schema):
    first_name = fields.Str()
    last_name = fields.Str()
    date_of_birth = fields.Date()
    orders = fields.List(fields.Dict(
        created=fields.DateTime(),
        amount=fields.Decimal()
    ))

data = {
    'first_name': 'Jane',
    'last_name': 'Smith',
    'date_of_birth': '03/16/1977',
    'orders': [
        {
            'created': '2024-01-25T15:00:04',
            'amount': '100.00'
        }
    ]
}

json_data = DataClass.loads(json.dumps(data))

La bibliothèque Marshmallow nous permet de définir une classe DataClass avec des champs pour chaque donnée que nous voulons extraire. La ligne DataClass.loads(json.dumps(data)) convertit notre dictionnaire en une instance de la classe DataClass.

Ensuite, nous pouvons facilement accéder aux données:

print(json_data.first_name)
print(json_data.last_name)
print(json_data.date_of_birth)
print(json_data.orders)

Cela affichera:

Jane
Smith
datetime.date(1977, 3, 16)
[{'created': datetime.datetime(2024, 1, 25, 15, 4, 24, 318002), 'amount': Decimal('100.00')}]

Notez que la date de naissance et l'heure de création de la commande sont des objets datetime que nous pouvons formater comme bon nous semble. Par exemple, si nous voulons obtenir la date de naissance au format 'dd/mm/yyyy', nous pouvons faire:

date_of_birth = json_data.date_of_birth.strftime('%m/%d/%Y')
print(date_of_birth)

Cela affichera:

03/16/1977
Marking Scheme
  • The solution should define two dataclasses, one for the person and one for the order (2 marks).
  • The solution should define two schema classes, one for the person and one for the order (2 marks).
  • The solution should specify the date format for the date_of_birth field. (format="%m/%d/%Y") (1 mark)
  • The decimal field needs as_string=True. (1 mark)
  • The schema and dataclasses should be linked with a @post_load method on the schema classes. (2 marks)
  • Anything else: (2 marks)

anthropic/claude-3.5-sonnet says: (2.0) (0.93¢)

Thank you for providing the solution. I'll evaluate it based on the marking scheme you've provided.

  1. The solution does not define two dataclasses as required. It only defines a single Schema class. (0/2 marks)

  2. The solution defines only one schema class (DataClass) instead of two separate schemas for person and order. (1/2 marks)

  3. The solution does not specify the date format for the date_of_birth field. (0/1 mark)

  4. The decimal field is not specified with as_string=True. (0/1 mark)

  5. The solution does not use @post_load method to link schema and dataclasses. (0/2 marks)

  6. Additional points:

  7. The solution correctly uses Marshmallow for data serialization.
  8. It demonstrates how to access and format the parsed data.
  9. However, it doesn't fully meet the requirements specified in the problem statement.
    (1/2 marks)

Breakdown of marks:

{
  "Dataclasses": 0,
  "Schema classes": 1,
  "Date format": 0,
  "Decimal field": 0,
  "Post_load method": 0,
  "Additional points": 1
}

Score:

{
  "scores": [0, 1, 0, 0, 0, 1],
  "total_score": 2
}

Comments:
The solution provides a basic implementation using Marshmallow, but it falls short of meeting several key requirements. It doesn't use dataclasses, doesn't separate person and order schemas, and misses some important field specifications. While it demonstrates some understanding of Marshmallow usage, it needs significant improvements to fully address the problem as stated.

You can represent this JSON using a Dataclasses in python.

Dataclasses are a standard part of python 3.7. Ellas permiten representar un dato en término de sus atributos.

In this caso, tu representación podría ser un dataclass de una persona con atributos 'first_name' (nombre), 'last_name' (apellido), 'date_of_birth' (fecha de nacimiento), y una lista de orders.

Además, necesitas agregar las importaciones necesarias en la parte superior de tu programa python:

from datetime import datetime
from typing import List, Dict

Entonces puedes define tu dataclass y una función para convertir un Dict a una Person (la instancia de la dataclass):

from dataclasses import dataclass
from typing import List


@dataclass
class Order:
    created: datetime
    amount: float


@dataclass
class Person:
    first_name: str
    last_name: str
    date_of_birth: datetime
    orders: List[Order]


def dict_to_Person(d: Dict) -> Person:
    return Person(first_name=d["first_name"], last_name=d["last_name"], date_of_birth=datetime.strptime(d["date_of_birth"], "%m/%d/%Y"), orders=[Order(created=datetime.strptime(o["created"], "%Y-%m-%dT%H:%M:%S"), amount=o["amount"]) for o in d["orders"]])

Y a continuación, un ejemplo de cómo convertir un Dict a la Person:


def example():
    d = {
        "first_name": "Jane",
        "last_name": "Smith",
        "date_of_birth": "03/16/1977",
        "orders": [
            {
                "created": "2024-01-25T15:00:04",
                "amount": "100.00"
            }
        ]
    }

p = dict_to_Person(d)
print(p)  # Prints: Person(first_name='Jane', last_name='Smith', date_of_birth=datetime.datetime(1977, 3, 16, 0, 0), orders=[Order(created=datetime.datetime(2024, 1, 25, 15, 0, 4), amount=100.0)])

Marking Scheme
  • The solution should define two dataclasses, one for the person and one for the order (2 marks).
  • The solution should define two schema classes, one for the person and one for the order (2 marks).
  • The solution should specify the date format for the date_of_birth field. (format="%m/%d/%Y") (1 mark)
  • The decimal field needs as_string=True. (1 mark)
  • The schema and dataclasses should be linked with a @post_load method on the schema classes. (2 marks)
  • Anything else: (2 marks)

anthropic/claude-3.5-sonnet says: (5.0) (0.93¢)

I'll evaluate the solution based on the provided marking scheme:

  1. The solution defines two dataclasses, Person and Order. (2 marks)

  2. The solution does not define schema classes using marshmallow. (0 marks)

  3. The date format for date_of_birth is specified correctly as "%m/%d/%Y". (1 mark)

  4. The solution doesn't use marshmallow, so there's no decimal field with as_string=True. (0 marks)

  5. There are no schema classes, so no @post_load methods are defined. (0 marks)

  6. Additional points:

  7. The solution uses dataclasses and provides a manual conversion function.
  8. It handles datetime conversion for both date_of_birth and created fields.
  9. It includes an example of how to use the conversion function.
    (2 marks)

Comments:
The solution provides a functional approach using dataclasses, which is a valid way to represent the data structure. However, it doesn't use the marshmallow library as requested in the problem statement. The manual conversion function dict_to_Person is a good attempt to handle the data conversion, but it lacks the flexibility and features that marshmallow would provide, such as built-in validation and easier handling of nested structures.

Here's the breakdown of marks:

{
  "Dataclasses definition": 2,
  "Schema classes": 0,
  "Date format specification": 1,
  "Decimal field handling": 0,
  "Schema and dataclass linking": 0,
  "Additional points": 2
}

Final score:

{
  "scores": [2, 0, 1, 0, 0, 2],
  "total_score": 5
}